Chemical induction of Hsp70 reduces α-synuclein aggregation in neuroglioma cells.
نویسندگان
چکیده
Misfolding and aggregation of α-synuclein (α-syn) is associated with the development of a number of neurodegenerative diseases including Parkinson's disease (PD). Analyses of post mortem tissues revealed the presence of molecular chaperones within α-syn aggregates, suggesting that chaperones play a role in α-syn misfolding and aggregation. In fact, inhibition of chaperone activity aggravates α-syn toxicity, and the overexpression of chaperones, particularly 70-kDa heat shock protein (Hsp70), protects against α-syn-induced toxicity. In this study, we investigated the effect of carbenoxolone (CBX), a glycyrrhizic acid derivative previously reported to upregulate Hsp70, in human neuroglioma cells overexpressing α-syn. We report that CBX treatment lowers α-syn aggregation and prevents α-syn-induced cytotoxicity. We demonstrate further that Hsp70 induction by CBX arises from activation of heat shock factor 1 (HSF1). The Hsp70 inhibitor MAL3-101 and the Hsp70 enhancer 115-7c led to an increase or decrease in α-syn aggregation, respectively, in agreement with these findings. In summary, this study provides a proof-of-principle demonstration that chemical modulation of the Hsp70 machine is a promising strategy to prevent α-syn aggregation.
منابع مشابه
miR-16-1 Promotes the Aberrant α-Synuclein Accumulation in Parkinson Disease via Targeting Heat Shock Protein 70
There is striking evidence that heat shock protein 70 (Hsp70) negatively regulates α-synuclein aggregation, which plays a significant role in the formation and progression of Parkinson disease (PD). However, how the Hsp70 in neurons fails to prevent or even reverse α-synuclein aggregation and toxicity in PD still remains to be determined. In the present study, we constructed an α-synuclein-over...
متن کاملGenetic and Chemical Activation of TFEB Mediates Clearance of Aggregated α-Synuclein
Aggregation of α-synuclein (α-syn) is associated with the development of a number of neurodegenerative diseases, including Parkinson's disease (PD). The formation of α-syn aggregates results from aberrant accumulation of misfolded α-syn and insufficient or impaired activity of the two main intracellular protein degradation systems, namely the ubiquitin-proteasome system and the autophagy-lysoso...
متن کاملAntibodies against Alpha-Synuclein Reduce Oligomerization in Living Cells
Recent research implicates soluble aggregated forms of α-synuclein as neurotoxic species with a central role in the pathogenesis of Parkinson's disease and related disorders. The pathway by which α-synuclein aggregates is believed to follow a step-wise pattern, in which dimers and smaller oligomers are initially formed. Here, we used H4 neuroglioma cells expressing α-synuclein fused to hemi:GFP...
متن کاملDetection of α-synuclein amyloidogenic aggregates in vitro and in cells using light-switching dipyridophenazine ruthenium(II) complexes.
Protein aggregation is the hallmark of a number of neurodegenerative diseases including Parkinson's and Huntington's diseases. There is a significant interest in understanding the molecular mechanisms involved in the self-association and fibrillization of monomeric soluble proteins into insoluble deposits in vivo and in vitro. Probes with novel properties, such as red-shifted emission, large St...
متن کاملHsp70 Reduces alpha-Synuclein Aggregation and Toxicity.
Aggregation and cytotoxicity of misfolded alpha-synuclein is postulated to be crucial in the disease process of neurodegenerative disorders such as Parkinson's disease and DLB (dementia with Lewy bodies). In this study, we detected misfolded and aggregated alpha-synuclein in a Triton X-100 insoluble fraction as well as a high molecular weight product by gel electrophoresis of temporal neocortex...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- ACS chemical biology
دوره 8 7 شماره
صفحات -
تاریخ انتشار 2013